

4th November 2019 PVSEC-29: 10MoO1

Optimizing Busbar Design in Full and Halved Cell Modules and Impact on the Cell-to-Module Yield

优化全**片和半片**电池组 **件的主栅**设计**及其**对 发电量损益的影响

Dr Marco Ernst¹, Ingrid Haedrich¹, Yang Li², Pei-Chieh Hsiao², Alison Lennon²

Cell

¹Australian National University

²University of New South Wales

<u> Module</u>

Cell-to-Module-Yield (CTMY)

- Methodology to predict annual yield losses and gains caused by solar module design and materials under field exposure
- **太阳**电池组件设计和材料在户外工作下的年产量损**耗和增益**预测方法
- Aim:

Australian

Iniversitv

- Enable rapid virtual prototyping of new concepts and designs
- Enable optimization of key design elements (e.g. backsheet, ribbon, glass) by separating individual loss/gain mechanisms
- Enable optimizing modules for different climates under realistic conditions (angular & spectral irradiance, environmental factors)
- 目标:
 - 实现新概念和设计的快速虚拟原型
 - 通过分离各个损耗/增益机制,实现关键设计元素(如背板、焊带、玻璃)
 的优化
 - 在实际条件(角度和光谱辐照度、环境因素)下为不同气候优化组件

- Separating 12 yield loss and gain mechanisms using timestep approach 用时间步法分离12种产量损耗和增益机制
- At each timestep:
 - Calculating optical cell-to-module losses and gains
 - Iteratively calculating cell temperature
 - Calculating electric losses

在每个时间步骤: • 计管由池到组件的光损耗

- 计算电池到组件的光损耗和增益
- **迭代**计算电池温度
- 计算电损耗

I. Haedrich, D. C. Jordan, and M. Ernst, Solar Energy Materials and Solar Cells 202, 110069 (2019), DOI: <u>10.1016/j.solmat.2019.110069</u>.

Model validation

CTM (STC)

- Validation under STC conditions
- **STC条件下的**验证模型
- Comparison of model against measurementbased reference data [1]
- **与基于**测量的参考数据的比 较
- Overall in good agreement!
- 整体一致!

[1] I. Haedrich, et al., "Unified methodology for determining CTM ratios: Systematic prediction of module power," Solar Energy Materials and Solar Cells
131, 14–23 (2014).

Loss/Gain Mechanism from Cell to Module	Modelled values	Reference [1]	
STC nameplate	285.0	285.0	
Spectral mismatch to AM1.5	0.0	0.0	
Angular	0.0	0.0	
Reflection front glass	-11.4	-11.4	
Absorption glass	-3.8	-3.3	
Absorption embedding	-3.1	-3.5	
Coupling gain (CG) finger	5.2	5.3	
CG ribbons	0.3	0.3	
CG backsheet	3.0	4.4	
CG cell surface	5.0	3.4	
Low level irradiance (LLI)	0.0	0.0	
Thermal	0.0	0.0	
Ohmic interconnection	-9.4	-9.0	
Final module power	270.8	271.2	

Model validation

CTMY model validation

	Irradiance		Temperature	Power	
	[W/m²]	[%]	[K]	[W]	[%]
Our model at location Denver (NREL)					
MBE	0.55	0.01	-0.03	0.7	0.8
WMBE	2.27	0.4	-0.47	0.39	0.4
RMSE	22.6	4.2	2.8	4.6	4.8

CTMY model validation

- Goal: Determine impact of busbar in full and halved cell modules on CTM-Yield
 目标:在全片和半片电池组件中分析主柵对电池到组件的产量的影响
- Step 1: Optimise the cell design in combination with the cell interconnection design for an optimum performance
 - inside a module
 - under STC
 - 步骤1:结合电池互连设计优化电池设计以获得最佳性能
 - 在组件内部
 - 在STC下
- Step 2: Calculation of annual yield for best performing designs
 - 步骤2: 计算最佳设计的年产量

副柵的根数

lacksquare

•

- **互**连条的个数
- **互**连**条的**宽度
- **互**连条的类型 •

Optimizing front metallization

Cell in air with ribbon

- Example of optimization for a full-cell, planar ribbons
- Cell optimization in air (including ribbon) may underestimate coupling gains, e.g. from lightredirecting films (LRF)

全片电池**扁平**焊带组件的优化示例

在空气中优化电池(包括焊带)可能**会低估耦合增益** , **例如使用反光**贴条(LRF)

Optimizing front metallization

Australian

National University

- Optimum number of fingers within module embedding slightly higher, due to
 - Reduced electrical losses (lower current)
 - Increased optical gain

在组件内优化**副栅会得到更多的副栅根数**, 因为

- 降低电气损耗(低电流)
- 增加的光学增益

Optimizing front metallization

- LRF structures allow to increase the ribbon width due to the reduced optical width after embedding
- The optimized width is 1300 μm compared to 800 μm for planar ribbons

Australian

National University

• Theoretical yield reduced for cells in air with wider LRF ribbons due to increase shading losses

Annual yield – optical gain and ohmic loss National University

Australian

• After embedding the cells with LRF ribbons perform best due to coupling gain and low ohmic losses

• Both, reduction in electrical losses and increase in optical gain contribute to an increase in the annual yield

电损耗的减少和光学增益的增加都有助于提高年产量

Cell-to-Module-Yield Methodology

- Validated using module outdoor measurements at NREL 使用NREL的组件室外测量进行验证
- Applied to busbar / metallization designs optimized for full and halved-cells after module embedding
 - Light-redirecting-films enable using much wider ribbons (optimized width of 1300 μ m compared to 800 μ m for planar)
 - 1.8% yield gain for full-cell 8BB with LRF compared to 5BB planar ribbon reference
 - Halved-cells further increase CTMY energy yield by 3-4%
- 应用于全**片和半片**电池在组件内优化**主柵/金属化**设计
- 反光贴条允许使用较宽的焊带(优化宽度为1300 mm, 而扁平焊带为800 mm)
- 八主柵带反光贴条的全片电池可以比五主柵扁平焊带电池提升1.8%的产量增益
- 半片电池进一步提高 3-4% 的CTMY能量产出

Thank you for your attention

谢谢您的关注。

We are open for collaboration!

我们很乐意进行合作!

marco.ernst@anu.edu.au

More information and free download of SunCalculator and high-time resolution TMY datasets for Australia at <u>www.marcoernst.net</u>

更多信息的请访问www.marcornst.net,免费下载SunCalculator和高时间分辨率的TMY数据集

Acknowledgements

This work has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA 2017/RND002). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.